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ABSTRACT
Glanceability and low access time are arguably the key assets
of a smartwatch. Smartwatches are designed for, and excel
at micro-interactions– simple tasks that only take seconds to
complete. However, if a user desires to transition to a task
requiring sustained usage, we show that there are additional
factors that prevent possible longer usage of the smartwatch.
In this paper, we conduct a study with 18 participants to empir-
ically demonstrate that interacting with the smartwatch on the
wrist leads to fatigue after only a few minutes. In our study,
users performed three tasks in two different poses while using
a smartwatch. We demonstrate that only after three minutes of
use, the change in perceived exertion of the user was anchored
as “somewhat strong” on the Borg CR10 survey scale. These
results place an upper bound for smartwatch usage that needs
to be considered in application and interaction design.
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INTRODUCTION
Small wrist-worn devices such as smartwatches are becom-
ing commonplace. Smartwatch interaction design is focused
on micro-interactions where the users quickly attends to the
watch, perform their tasks, and then disengage with the watch
to resume other activities. Past research has shown the promise
of interaction design focusing on micro-interactions because
the position of the watch on the body affords very quick ac-
cess times and glanceability [1]. Recent research has proposed
improvements to smartwatch interactions that enable other,
longer, and more involved kinds of tasks that users often
perform on their mobile phones (e.g., text entry [9], [14]).
Research also looks beyond current smartwatch hardware to
expand the interaction area with the goal of enabling the users
to perform more complex tasks [7].
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However the user has to hold their hand in a raised position
[13] to use a smartwatch. For in-air gestures, holding the
arm up for an extended period of time can cause fatigue in the
upper limbs, referred to as the gorilla-arm effect [8]. Excessive
fatigue leads to discomfort, impacts the ability of a user to
complete a task, and may even pose health risks. Ultimately,
if this effect is present for smartwatch use, it could reduce the
usability of a wearable system because comfort is one of the
most important considerations when designing for wearables
[12] [10] [19]. The overall adoptability of a wearable device
relies on both its functionality and perceived comfort [4]. And
for extend duration of use, perceived comfort becomes an even
more important consideration [16].

Understanding the users’ perceived exertion while using a
smartwatch helps make better design decision that improve
overall interaction with the device. Although early work as-
sessed comfort levels for head worn equipment such as helmets
[15] and arm worn device [17], there is little research on exer-
tion while using wearables. Knight and Baber determined that
simply adding a wearable computer to the body leads to in-
crease in perception of exertion and discomfort, and adopting
the posture (disposition) to interact with it, leads to increased
muscular activity [11]. Hincapié-Ramos et al.[8] developed
a method to quantify arm fatigue in mid-air interactions (ges-
tures) and termed it consumed endurance. While their work
provides a framework for studying exertion, little is known
about fatigue when interacting with a smartwatch.

In this paper, we investigate the impact of sustained usage
of the watch to determine the change in perceived exertion
with increase in usage time. We show that only after 3 (while
standing) to 4 minutes (while sitting) of smartwatch use, a
user exhibits somewhat strong exertion, making smartwatches
in their current state, unsuitable for longer interactions.

Borg CR10 Scale for Perceived Exertion
To measure perceived exertion, we use the self-report Borg
CR10 Scale [5]. It is a category (C) ratio (R) scale i.e., twice a
rating is likely to be twice as hard. It is a 12 point scale from
0 to 10 with an additional anchor at 0.5 with standard labels to
ensure approximately equidistant scale intervals (Table 1). The
scale has been studied, used, and verified in the literature to
have a strong linear correlation with physiological indicators
of perception such as heart rate [6], and thus a suitable measure
for perceived exertion. It has previously been used in similar
studies to measure fatigue in gestures [3] and discomfort of
wearables [12].
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Rating Description
0 Nothing at all
0.5 Extremely Weak (Just noticeable)
1 Very Weak
2 Weak (Light)
3 Moderate
4 Somewhat Strong
5 Strong (heavy)
6
7 Very Strong
8
9
10 Extremely Strong

Table 1. Borg CR10 Perceived Exertion Scale

PERCEIVED EXERTION STUDY
Here, we investigate the impact of smartwatch use on arm
fatigue. We hypothesize that using a smartwatch does not
afford continuous use for long because users need to hold their
arm up in order to see and touch the smartwatch.

Study Design
We conduct a within-subject study, which simulates typical
users’ target selection tasks with a smartwatch in different
poses over time. We simulate it using three different forms of
abstract smartwatch input primitives:

1. Touch: Participants tap a target once with their finger.

2. Dwell: Tap and hold a target for a specified time (500ms).

3. Swipe: Swipe a target in a particular direction (shown on
screen) for a specified movement of at least 35 pixels.

The participants perform the inputs in two different poses
(Figure 1), which mimicks commonly held smartwatch usage
positions: A) sitting with elbows rested; and B) standing with
arm raised. We denote each combination of input and pose
as a condition in our study. The participants completed eight
30-second trials in each condition.

We measure participants’ self-reported exertion with the Borg
CR10 scale [5], once before each condition to establish a
baseline, and at the end of each 30 second trial. Participant
provided their responses verbally and a researcher recorded
their response on paper.

We recruited 18 participants (8 female, 10 male) via word of
mouth. The participants’ ages ranged from 22 to 35 (median =
25.5) and their smartwatch experience varied from non-users
to power users.

Procedure
Participants start the study in one of two poses (sitting or stand-
ing). The poses are counter balanced across participants and
the conditions (input task) within each pose are randomized.
Participants complete 8 trials of 30 seconds in a given condi-
tion with a 5-minute break after each condition to rest and to
reduce any carryover effects.

For each trial, participants select a target as many times as
they can in the allotted time. Touch and dwell targets are solid
circles with a 35 pixel radius, while swipe targets have arrows
indicating a particular direction participants swipe in to select
the target. If the participants accurately select the target, it

Figure 1. The two poses in which our study was conducted, (A) sitting
with elbows resting on armrest, and (B) standing with arm raised.

Effect (main or interaction) p-value
time <0.001
pose <0.001
input <0.001
pose:input <0.01
pose:time <0.001
input:time 0.98
pose:input:time 0.68

Table 2. Table summarizing results of ANOVA with pose, input and time
as independent variables and perceived exertion as the dependent vari-
able after performing the ART procedure.

disappears and the next target appears at a random position on
the screen. We time-stamp and log all touch events, the count
of accurate touches, and total touches during each trial.

We used the Samsung Gear Live smartwatch with a screen
size of 1.63 inches, and a resolution of 320x320 pixels. The
watch runs Android Wear 6.0. We developed a custom An-
droid application that progresses through our experimental
procedure. The application pauses every 30 seconds to allow
researchers to collect participant self-reported exertion and
any other feedback.

RESULTS
We report our study results investigating impact of different
poses, input primitives, and usage time on user exertion.

We collect our data using the ordinal Borg CR10 Scale. The
data was not normally distributed according to a Shapiro-Wilk
test (p<0.05). We transform our data using ART analysis and
the associated ARTool [18]. This transformation aligns the
perceived exertion scores for each main or interaction effect
and assigns them ranks. This procedure allows us to conduct
a parametric three-way repeated measures ANOVA (INPUT x
POSE x TIME) for each effect on the transformed data [18].
Table 2 shows the results of our ANOVA. We present results
of additional post-hoc tests on all significant effects below.

Usage Time- There is a significant effect of usage time on
exertion. The raw exertion scores of participants show a con-
sistent upward trend over time. Figure 2 and 3 show the
boxplots of the raw (non-transformed) exertion values in each
input primitive in both poses. Thus, we can establish that an
increase in usage time leads to increase in perceived exertion.

On the transformed data, we conduct a post-hoc Tukey’s pair-
wise comparisons at each time point and observe a significant
difference (p<0.05) between all pairs of time points except
between 3.5 and 4 minutes. Moreover, the least-squared mean
value of exertion increases with increase in time. Together,
it confirms that participants consistently reported higher per-
ceived exertion with increase in usage time.
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Figure 2. Boxplot and linear regression model for PE of subjects in standing pose for all three conditions: Single (left), Dwell (middle), and Swipe (right)

Figure 3. Boxplot and linear regression model for PE of subjects in sitting pose for all three conditions: Single (left), Dwell (middle), and Swipe (right)

We also want to ascertain after how much time does a smart-
watch use becomes unsuitable for continuous interactions. A
self-reported value of 4 on the CR10 scale is anchored as
‘somewhat strong’. We use this as a threshold for when contin-
ued usage would become a significant usability issue.

In the standing pose, the median exertion score exceeds ‘some-
what strong’ at t=2.5min for Single Touch and Swipe. It
exceeds ‘somewhat strong’ at t=3min for dwell. In the sitting
pose, it exceeds this threshold at t=4min for Single Touch,
t=3.5min for Dwell, and t=2.5min for Swipe.

For any form of input primitive, a user is expected to be ‘some-
what strongly’ tired after only 3 minutes of smartwatch use in
the standing pose, and 4 minutes of use when sitting.

Pose- A significant effect of pose on exertion indicates that
the kind of pose held by the participants makes a difference
in their perceived exertion. We conduct a post-hoc Tukey’s
pairwise comparison of the two poses within our pose variable:
standing versus sitting. A significant difference (p<0.0001)
exists between the two poses. The standing pose has a higher
least-squared mean exertion, which means participants were
exerted more using the smartwatch when standing.

Pose:Time- The relationship between pose and time is impor-
tant to better understand the individual effects of both factors.
So, we fix pose and look at the main effects of time. For both
poses, we obtain a significant effect of time (p<0.001) with

ANOVA. It means, even though there are differences in how
much time affects exertion in each pose, regardless, time has a
significant effect on the perceived exertion.

For both poses, we also conduct a post-hoc Tukey’s pairwise
comparisons at each time point. In the sitting pose, a 30
second difference in time pairs did not reveal significance for
any pair except between 0.5 minutes and 1 minute. However, a
difference of 1 minute or greater led to significant differences
in the exertion values between any two time points.

In contrast in the standing pose, all time pairs up until 2 min-
utes with a difference of 30 seconds revealed significance.
After that, there was no observed significance between pairs
that are 30 seconds apart. Again, a difference of 1 minute
or greater led to significant differences in the exertion levels
between any two time points.

What this means is that using the smartwatch while standing
can lead to a massive increase in exertion quickly (~30 seconds)
whereas it takes a little longer (~1 minute) for a noticeable
change in exertion while sitting. It supports the results we
saw earlier with the standing pose demanding higher physical
effort than the sitting pose.

Input- A significant effect of the kind of input primitive on
exertion indicates that the exertion varies by type of input. We
conduct a post-hoc Tukey’s pairwise comparison of the three
primitives: Touch, Dwell, and Swipe. A significant difference
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exists between Touch and Swipe (p<0.05), and Dwell and
Swipe (p<0.001). Swipe has the highest least-squared mean
exertion value and Single Touch has the lowest least-squared
mean exertion value across all participants. This indicates that
the Swipe primitive, commonly used on touch devices takes
the most perceived exertion to use on a smartwatch.

Pose:Input- There is a significant interaction effect between
pose and input, but we did not explore it further. The re-
lationship between them is interesting and warrants further
exploration, however is not pertinent to our hypothesis.

Other Measures
Our analysis results are also corroborated with observations
from the study and subjective feedback by the participants.
Some participants were noticeably tired, and some performed
arm stretches/exercises in the rest-time between conditions
citing fatigue in their arm muscle. As potential side effects of
exertion, we looked at accuracy and average reaction time as
metrics that can be affected by time. While the accuracy shows
variance depending on the input primitive, we observe an
overall decrease in the average reaction time for the dwell input
primitive in both poses. However, there was no significance
found in time as a predictor for accuracy, or average reaction
time in any of the cases.

DISCUSSION & CONCLUSION
Our study provides evidence that smartwatches are not suited
for extended interactions in their current form. The manufac-
tures provide hints to placing intentional design limitations
on current smartwatch applications and their user interfaces.
Android Wear guidelines state that an app should be designed
for glanceability. Their guidelines are intentionally targeted at
applications that only require short usage.

The QuickDraw study [1] found the lower bounds of watch
interactions based on the time required to access the device.
Our study places an upper bound between 3 and 4 minutes
before perceived endurance starts to impact usage.

As we explore ways to overcome the technical and interaction
limitations of current smartwatches to enable richer and fuller
application experiences, we also need to consider the results
of this study. Banovic et al. found that a large portion of
the mobile interactions happen in 5 minutes [2]. Even if
some of the other interaction challenges for smartwatches are
addressed with additional research (e.g., text entry speed), a
large number of traditional phone interactions would still take
too long on a smartwatch and lead to fatigue. If we want to
enable longer smartwatch interactions, we need alternative
techniques that do not require the user to hold and sustain the
pose currently employed by smartwatches.
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