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ABSTRACT

An infrastructure-less indoor localization system is pro-
posed based on fingerprints of light signals acquired at high
frequencies. In contrast to other systems that modulate lights,
the proposed system distinguishes lights by learning from
training samples. Due to slight differences in the electronic
components used in the construction of compact fluorescent
light (CFL) and light emitting diode (LED) bulbs, the opti-
cal signals emitted by each light bulb have slight differences
with other light bulbs even within the same brand and model.
Light signals are digitized with a fast and accurate analog-
to-digital converter (ADC) at up to1 mega-samples/second,
segmented, and mapped into the frequency domain using the
Fast Fourier Transform (FFT). Spectral features based on the
FFT are filtered, normalized, and used as training data for su-
pervised machine learning algorithms. Results are provided
for two classifiers of varying complexity: (1) Ak-Nearest
Neighbor (KNN) classifier; (2) A Convolutional Neural Net
(CNN) classifier. A hardware system for indoor localization
was designed to analyze the performance of the classifiers.
Under certain restrictions, results show that light bulbs may
be identified with high accuracy without special infrastruc-
ture for modulation. Identifying a light bulb is meant to be
synonymous with identifying its associated location.

Index Terms— Light fingerprinting, sampling frequency,
supervised learning, convolutional neural net, indoor local-
ization.

1. INTRODUCTION

With the deployment of low-latency, high-speed5G wireless
communications, emerging technologies become possible due
to connectivity within the “Internet of Things (IoT)” and “In-
ternet of Signals”. One important task to solve is indoor lo-
calization, detection, and classification of differentiated sig-
nals in an environment. This paper considers methods from
machine learning to classify high-frequency light signalsin
indoor environments. Figure 1 depicts a light fingerprinting
hardware system comprised of a high-frequency light sensor,
analog-to-digital converter (ADC) scope, Raspberry-PI pro-
cessor, and auxiliary components. Without additional infras-

†Technicolor Research, 175 S. San Antonio Rd., Suite 200, LosAl-
tos, CA, 94022, USA. Email Correspondence:{shahab.hamidi-rad;
kent.lyons; naveen.goela}@technicolor.com.

(a) Internal view of hardware system and components.

(b) External view. (c) Interface, light sensor.

Fig. 1. A hardware system for light fingerprinting and indoor
localization is comprised of multiple components: Raspberry-
PI processor, light sensor, ADC (scope), battery, user inter-
face. The system with a light sensor is useful both for col-
lecting training data, and for classifying lights. Additional
infrastructure is not required.

tructure, the system collects data from different lights ina
training phase, and distinguishes between multiple lightsin a
classification phase. The hardware components could be in-
corporated within a mobile device with the inclusion of light
sensors with high-frequency sensing on the order of1-MHz.

Prior work regarding light fingerprinting relies on the ex-
plicit modulation of light transmitters in a visible light com-
munication (VLC) framework [1–5]. Other accurate localiza-
tion systems such as Epsilon or Luxapose utilize pulse-width
modulation (PWM) or on-off keying to transmit identifiers,
and use trilateration to localize devices [6, 7]. Without in-
frastructure, fingerprinting indoor locations was achieved via
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Fig. 2. Signal processing of light samples acquired at100-ms
intervals at a rate of106 samples/second (1-MHz).

light intensity histograms in the Fiat-Lux system [8]. How-
ever, light intensity is not unique to individual lights, and is
affected by several factors such as the distance between the
sensor and light, room reflections, and variation of illumina-
tion over time of day. Another idea is to combine ambient
sound, light, color, and motion via accelerometer to obtain
a photo-acoustic signature of a location [9]. Recently, the
IDyLL system was proposed for indoor localization using a
fusion of signals from light sensors and inertial measurement
units (IMUs) [10].

The approach presented in this paper is focused on finger-
printing individual lights based on their high-frequency fluc-
tuations and switching patterns. The hypothesis explored via
experiments is that each light provides a unique spectral sig-
nature if high-frequency sensing is available. High-frequency
sensing capabilities beyond the KHz range may be present
in future mobile phones. Concurrent to our research, authors
of [11, 12] introduce an indoor localization system LiTell us-
ing unmodified light fixtures. In our approach, modern ma-
chine learning algorithms such as convolutional neural nets
(CNNs) are harnessed to train multi-layer deep classifiers to
distinguish light bulbs. Such classifiers do not rely on hand-
crafted signal features and have the potential to generalize to
new inputs given enough training data.

2. SIGNAL ACQUISITION AND PROCESSING

2.1. Signal Acquisition

The acquisition of light signals depends on the characteristics
of both the high-speed light sensor and the ADC. Our system
incorporated a photodiode sensor (light-to-voltage TSL14S)
with built-in pre-amplifier sensitive to light fluctuationsand
fast switching patterns. The analog signal of the sensor was
connected to an8-bits/sample ADC (PicoScope 2000) operat-
ing atfs = 106 samples/second. The ADC was connected via
a USB cable to a Raspberry-PI processer. Each light sensing
phase of data collection lasted100-ms in duration yielding
100, 000 samples in the time domain per data file.

Fig. 3. Top and Bottom: The FFT magnitude response of
two instantiations of a CFL light bulb (Ecosmart brand) in the
[100-130] KHz range. The goal is to differentiate the switch-
ing pattern of the lights.

2.2. Signal Processing– Time and Frequency Domain

Each data file containing100, 000 samples per light bulb was
further processed as displayed in Figure 2. The100, 000 sam-
ples were divided into overlapping segments of length8192
samples with50% overlap, resulting in23 consecutive over-
lapping segments per data file. An8192-point FFT was com-
puted per segment mapping the time domain signal to the fre-
quency domain. The magnitude of the frequency response
was retained (4096 distinct values). As shown in Figure 3, the
magnitude of the samples in the frequency domain reveals dif-
ferences in the high-speed switching patterns for two instan-
tiations of CFL light bulbs (Ecosmart brand). Depending on
the time of day, warm-up effects, and/or power-line effects,
the frequency samples may be shifted or modified slightly.
However, the aim is to learn the “shape” of the frequency re-
sponse which is the invariant fingerprint.

2.3. Feature Extraction, Filtering, Normalization

Each data file containing23 segments with corresponding
4096-length FFT magnitudes per segment was processed to
extract feature vectors for experiments. In a first experiment,
only 1400 magnitude values out of4096 total were kept with
associated frequency range[20-190.9] KHz. In a second ex-
periment, half of the4096 magnitude values were kept with
associated frequency range[5-255] KHz. This yielded2048
spectral features per segment. With our specific light sen-
sor and8-bits/sample ADC, incorporating higher frequency
ranges did not improve classification accuracy significantly.
The mean of the FFT magnitude values was subtracted, and
all magnitude values were divided by the maximum value to
normalize the feature vector for each light bulb. Normaliza-
tion ensures that classifiers recognize the switching pattern of
lights, and not extraneous acquisition biases.
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3. SUPERVISED TRAINING OF CLASSIFIERS

The training and test data for CFL and LED light bulbs was
collected at different times. Based on the training data and
given labels for each light bulb, two main classifiers were
trained of varying complexity1.

3.1. k-Nearest Neighbor Classifier

Thek-Nearest Neighbor algorithm is one of the simplest su-
pervised machine learning algorithms, and its low-complexity
implementation is ideal for the Raspberry-PI processor of our
system, and mobile applications. A neighborhood parame-
ter of k = 3 closest training examples was chosen based on
standard cross-validation methods.

3.2. Convolutional Neural Net (CNN) Classifier

If a large amount of training data is available, a CNN clas-
sifier with multiple layers has the potential to generalize to
new inputs and learn variations in the switching patterns of
lights. In our controlled experiments, we were able to collect
fingerprint data-sets of a size on the order of the well-known
MNIST handwritten digits database. To show a proof-of-
concept, our CNN classifier is comprised as follows: (1) Input
convolutional layer; (2) Max-pool layer; (3) Fully-connected
layer; (4) Output (soft-max regression) layer. The follow-
ing parameter and input-output descriptions follow closely to
those specified in the literature (e.g. TensorFlow open source
models). The convolutional layer is inspired by state-of-the-
art one-dimensional speech and two-dimensional image pro-
cessing via deep learning.

For the first experiment, the input size to the CNN was
1400 spectral features. A convolutional kernel width of251
was selected with kernel stride1 and kernel depth256 yield-
ing a convolutional output volume of(1400 × 1 × 256). A
max-pool kernel width of4 and stride4 yielded a max-pool
output volume of(350× 1× 256). The fully-connected layer
had input size350 × 1 × 256 = 89600 and output size128.
The final output layer had input size128 and output of6
classes. Before the final layer, a dropout probability of0.3
was selected to avoid over-fitting, and a regularization factor
of 0.001 was chosen. The batch size was50 input vectors,
and the CNN was trained for100 epochs. The initial learning
rate was0.05 with a decay rate of0.95. Initialization of CNN
parameters was zero-mean with standard deviation1.0.

Similarly, for a second experiment with input feature size
2048, the convolutional kernel width was151 with stride
1 and kernel depth128. The convolutional output volume
was 2048 × 1 × 128. After a max-pool layer with ker-
nel width 4 and stride4, the max-pool output volume was

1Alternate classifiers such as support vector machines (SVMs) yielded
comparable accuracies for classification. However, given more training data,
the multi-layer CNN architecture presented in this paper has a higher poten-
tial to learn complex data variations and generalize to new inputs.

512× 1 × 128. A fully-connected layer was chosen with in-
put size512× 1× 128 = 65536 and output size128. A final
output layer had input size128 and output size8 representing
8 classes. Dropout was not utilized, but a regularization factor
of 0.005 was selected. The batch size was50 input vectors,
and the CNN was trained for100 epochs as in the first ex-
periment. The initial learning rate was0.05 with a decay rate
of 0.95. Initialization of CNN parameters was zero-mean
with standard deviation1.0. All CNN classifiers were trained
using the well-known back-propagation algorithm, minimiz-
ing a (cross-entropy) cost objective, and applying gradient
descent.

4. EXPERIMENTS AND RESULTS

Several experiments with CFL and LED bulbs were con-
ducted to analyze the performance of light fingerprinting
for indoor localization. As described in previous sections,
two main experiments are presented below for classifying
individual light bulbs2.

4.1. First Experiment: A Mixed Data-Set

In the first experiment, the data-set is comprised of6 light
bulbs including: 1 LED (Cree brand),3 CFLs (Ecosmart
brand), and2 CFLs (G. E. brand). A total of16 data files
for training were recorded for each light bulb, yielding
16 × 23 = 368 training feature vectors per bulb. A total
of 8 data files per bulb were recorded as a test-set after2-
days of separation between train and test samples. A total
of 8 × 23 = 184 feature vectors per bulb were used for test-
ing. Table 1 shows the confusion matrix results of the CNN
classifier. A total accuracy of97.10% is obtained. As a com-
parison, thek-nearest neighbor classifier achieved93.11%
accuracy (confusion matrix not shown).

C1 E1 E2 E3 G1 G2

LED-C1 184 0 0 0 0 0
CFL-E1 0 184 0 0 0 0
CFL-E2 0 0 184 0 0 0
CFL-E3 0 0 0 184 0 0
CFL-G1 0 0 0 0 183 1
CFL-G2 0 0 0 0 31 153

Table 1. Confusion matrix for CNN classifier for6 lights
including1 LED (Cree brand),3 CFLs (Ecosmart brand), and
2 CFLs (G. E. brand). The train and test samples are taken
with 2 days of separation. Total accuracy of97.10%.

4.2. Second Experiment: Lights Of The Same Brand

In the second experiment, the data-set is comprised of8 light
bulbs which are all LEDs (Cree brand). A total of40 data

2It is hypothesized that differentarrays of lights (e.g., LED arrays) could
also be distinguished via their combined group fingerprint.
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files for training were recorded for each light bulb, yielding
40× 23 = 920 training feature vectors per bulb. A total of20
data files per bulb were recorded as a test-set on the same day
as the training captures. In addition, a total of20 data files per
bulb were recorded as a test-set after2-days of separation be-
tween train and test samples. A total of20×23 = 460 feature
vectors per bulb were used for testing in both cases. Table 2
shows the confusion matrix results of the CNN classifier for
the test-set taken on the same day as the training captures. A
total accuracy of94.48% is obtained. As a comparison, the
k-nearest neighbor classifier achieved93.04% accuracy (con-
fusion matrix not shown). Similarly, Table 3 shows the confu-
sion matrix results of the CNN classifier for the test-set taken
after2-days of separation between training and testing. A to-
tal accuracy of76.11% is obtained. As a comparison, thek-
nearest neighbor classifier achieved76.41%, an almost iden-
tical result in accuracy (confusion matrix not shown). The
confusion matrix shows that2 of the8 LEDs caused most of
the classification error.

C1 C2 C3 C4 C5 C6 C7 C8

LED-C1 452 8 0 0 0 0 0 0
LED-C2 12 439 9 0 0 0 0 0
LED-C3 0 2 458 0 0 0 0 0
LED-C4 0 0 1 459 0 0 0 0
LED-C5 0 0 0 0 460 0 0 0
LED-C6 0 0 0 0 0 458 0 2
LED-C7 0 0 0 0 0 0 327 133
LED-C8 0 0 0 0 0 0 36 424

Table 2. Confusion matrix for CNN classifier for8 instantia-
tions of an LED light (Cree brand). The train and test samples
were taken from the same day of data collection. Total accu-
racy of94.48%.

C1 C2 C3 C4 C5 C6 C7 C8

LED-C1 453 7 0 0 0 0 0 0
LED-C2 23 432 5 0 0 0 0 0
LED-C3 0 0 155 0 305 0 0 0
LED-C4 0 0 16 444 0 0 0 0
LED-C5 0 0 0 0 460 0 0 0
LED-C6 0 0 0 0 23 436 0 1
LED-C7 0 0 0 32 235 73 0 120
LED-C8 0 0 0 0 0 0 39 421

Table 3. Confusion matrix for CNN classifier for8 instanti-
ations of an LED light (Cree brand). The train and test sam-
ples were taken after2 days of separation. Total accuracy of
76.11%.

Fig. 4. A plot of the FFT features of an LED (Verbatim brand)
over10 hours. Within certain frequency bands, a spectral drift
is observed.

4.3. Indoor Localization Using Light Fingerprints

Aside from the above controlled experiments with light bulbs,
our light fingerprinting hardware of Figure 1 was tested in
several indoor environments; e.g., hotel hallway, office build-
ing. The hardware system was able to distinguish multiple
locations consistently based on CFL lights. Certain brandsof
LEDs (e.g., Verbatim) were challenging to distinguish con-
sistently over days of time separation between train and test.
One particular issue which causes errors in classification is
plotted in Figure 4. The changes in the frequency magnitude
values of one instantiation of an LED light bulb (Verbatim
brand) are recorded over10 hours. Within bands of frequency,
spectral drift is observed over time. The drift regions may ei-
ther be excluded as features, or compensated by giving more
training data to the classifiers. A practical idea which im-
proved classification accuracy for both CFLs and LEDs is the
use ofmultiple feature vectors during the test phase of classi-
fying a light bulb. In other words, during alonger test phase,
a consensus may be reached over multiple feature vectors.

5. DISCUSSION

As shown by the classification results of experiments, it is
possible to distinguish high-frequency fluctuations of differ-
ent light bulbs, even of the same brand. Most CFL bulbs ex-
hibit a greater variability in high-frequency switching patterns
than LED bulbs. With more training data, the CNN classifier
has the potential to perform better than thek-nearest neigh-
bor classifier; however, classifiers with low-complexity for
training and testing are good candidates for mobile devices.
While a major property of our light fingerprinting system is
its infrastructure-less ease of use, it is important to notethat
our system is still compatible with modulation systems which
embed identifying signals in light switching patterns.
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