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ABSTRACT

An infrastructure-less indoor localization system is pro- |
posed based on fingerprints of light signals acquired at high |
frequencies. In contrast to other systems that modulatéslig
the proposed system distinguishes lights by learning from §
training samples. Due to slight differences in the eleétron  §
components used in the construction of compact fluorescen
light (CFL) and light emitting diode (LED) bulbs, the opti-
cal signals emitted by each light bulb have slight diffeesnc
with other light bulbs even within the same brand and model.
Light signals are digitized with a fast and accurate analog-
to-digital converter (ADC) at up t@ mega-samples/second,
segmented, and mapped into the frequency domain using th
Fast Fourier Transform (FFT). Spectral features based®n th — ,
FFT are filtered, normalized, and used as training data for su  (a) Internal view of hardware system and components.
pervised machine learning algorithms. Results are pravide
for two classifiers of varying complexity: (1) A-Nearest e

y —
(o]

PicoScope 200

Neighbor (KNN) classifier; (2) A Convolutional Neural Net
(CNN) classifier. A hardware system for indoor localization ¥ _
was designed to analyze the performance of the classifiers.§ 3
Under certain restrictions, results show that light bulkeym @ & @) Q

be identified with high accuracy without special infrastruc T _

ture for modulation. Identifying a light bulb is meant to be (b) External view. (c) Interface, light sensor.
synonymous with identifying its associated location.

Index Terms— Light fingerprinting, sampling frequency, Fig. 1. A hardware system for light fingerprinting and indoor
supervised learning, convolutional neural net, indoomloc localization is comprised of multiple components: Raspper
ization. PI processor, light sensor, ADC (scope), battery, user-inte

face. The system with a light sensor is useful both for col-
1. INTRODUCTION lecting training data, and for classifying lights. Additil
infrastructure is not required.

With the deployment of low-latency, high-spe&@ wireless
communications, emerging technologies become possilele du
to connectivity within the “Internet of Thing$dT)” and “In-  tructure, the system collects data from different lightsain
ternet of Signals”. One important task to solve is indoor lo-training phase, and distinguishes between multiple lights
calization, detection, and classification of differergthig- classification phase. The hardware components could be in-
nals in an environment. This paper considers methods fromorporated within a mobile device with the inclusion of ligh
machine learning to classify high-frequency light signals sensors with high-frequency sensing on the orderbfHz.
indoor environments. Figure 1 depicts a light fingerprigtin Prior work regarding light fingerprinting relies on the ex-
hardware system comprised of a high-frequency light sensoplicit modulation of light transmitters in a visible lighbm-
analog-to-digital converter (ADC) scope, Raspberry-Ri-pr munication (VLC) framework [1-5]. Other accurate locafiza
cessor, and auxiliary components. Without additionakisfr tion systems such as Epsilon or Luxapose utilize pulsekwidt
fTechnicolor Research, 175 S. San Antonio Rd., Suite 200, Ales mOdUIaﬂon_ (PWM) or on-off_keying .to transmit id?ﬂtifiGl’_S,
tos, CA, 94022, USA. Email Correspondencgshahab. hani di -rad; ~ and use trilateration to localize devices [6, 7]. Without in
kent . | yons; naveen. goel a}@t echni col or. com frastructure, fingerprinting indoor locations was achievia
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Fig. 3. Top and Bottom: The FFT magnitude response of
two instantiations of a CFL light bulb (Ecosmart brand) ia th

0-130] KHz range. The goal is to differentiate the switch-
Ing pattern of the lights.

light intensity histograms in the Fiat-Lux system [8]. How-
ever, light intensity is not unique to individual lights, dais
affected by several factors such as the distance between t
sensor and light, room reflections, and variation of illuasin
tion over time of day. Another idea is to combine ambient
sound, light, co_Ior,.and motion via ac_celerometer to obtain, 5 Signal Processing— Time and Frequency Domain
a photo-acoustic signature of a location [9]. Recently, the
IDyLL system was proposed for indoor localization using aEach data file containing00, 000 samples per light bulb was
fusion of signals from light sensors and inertial measurgme further processed as displayed in Figure 2. Tb& 000 sam-
units (IMUs) [10]. ples were divided into overlapping segments of lergjth2

The approach presented in this paper is focused on fingesamples with50% overlap, resulting ir23 consecutive over-
printing individual lights based on their high-frequenaycfl  lapping segments per data file. &n92-point FFT was com-
tuations and switching patterns. The hypothesis exploiad v puted per segment mapping the time domain signal to the fre-
experiments is that each light provides a unique specgal si quency domain. The magnitude of the frequency response
nature if high-frequency sensing is available. High-freqey ~ was retained4096 distinct values). As shown in Figure 3, the
sensing capabilities beyond the KHz range may be presemagnitude of the samples in the frequency domain reveals dif
in future mobile phones. Concurrent to our research, aathofferences in the high-speed switching patterns for two msta
of [11, 12] introduce an indoor localization system LiTed-u tiations of CFL light bulbs (Ecosmart brand). Depending on
ing unmodified light fixtures. In our approach, modern ma-the time of day, warm-up effects, and/or power-line effects
chine learning algorithms such as convolutional neuras netthe frequency samples may be shifted or modified slightly.
(CNNs) are harnessed to train multi-layer deep classifiers tHowever, the aim is to learn the “shape” of the frequency re-
distinguish light bulbs. Such classifiers do not rely on handsponse which is the invariant fingerprint.
crafted signal features and have the potential to genertliz

new inputs given enough training data. 2.3. Feature Extraction, Filtering, Normalization

Each data file containing3 segments with corresponding
2. SIGNAL ACQUISITION AND PROCESSING 4096-length FFT magnitudes per segment was processed to
extract feature vectors for experiments. In a first expenimne
only 1400 magnitude values out @096 total were kept with
associated frequency ran{-190.9] KHz. In a second ex-
The acquisition of light signals depends on the charadiesis periment, half of thel096 magnitude values were kept with
of both the high-speed light sensor and the ADC. Our systerassociated frequency ranffe255] KHz. This yielded2048
incorporated a photodiode sensor (light-to-voltage TS8)14 spectral features per segment. With our specific light sen-
with built-in pre-amplifier sensitive to light fluctuatiomsd  sor and8-bits/sample ADC, incorporating higher frequency
fast switching patterns. The analog signal of the sensor wasnges did not improve classification accuracy signifigantl
connected to aB-hits/sample ADC (PicoScope 2000) operat-The mean of the FFT magnitude values was subtracted, and
ing at f, = 10% samples/second. The ADC was connected viall magnitude values were divided by the maximum value to
a USB cable to a Raspberry-Pl processer. Each light sensimprmalize the feature vector for each light bulb. Normaliza
phase of data collection lastd®0-ms in duration yielding tion ensures that classifiers recognize the switching pedte
100, 000 samples in the time domain per data file. lights, and not extraneous acquisition biases.

2.1. Signal Acquisition
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3. SUPERVISED TRAINING OF CLASSIFIERS 512 x 1 x 128. A fully-connected layer was chosen with in-
put size512 x 1 x 128 = 65536 and output siz&28. A final
The training and test data for CFL and LED light bulbs wasoutput layer had input siz&28 and output siz& representing
collected at different times. Based on the training data and classes. Dropout was not utilized, but a regularizatiotofac
given labels for each light bulb, two main classifiers wereof 0.005 was selected. The batch size wasinput vectors,

trained of varying complexity and the CNN was trained far00 epochs as in the first ex-
periment. The initial learning rate was)5 with a decay rate
3.1. k-Nearest Neighbor Classifier of 0.95. Initialization of CNN parameters was zero-mean

; . . ) with standard deviatioh.0. All CNN classifiers were trained
The k-Nearest Neighbor algorithm is one of the simplest SUsing the well-known back-propagation algorithm, minismiz

pervised machine learning algorithms, and its low-comipjex ing a (cross-entropy) cost objective, and applying gradien
implementation is ideal for the Raspberry-PI processowof o descent

system, and mobile applications. A neighborhood parame-
ter of k = 3 closest training examples was chosen based on
standard cross-validation methods.

4. EXPERIMENTS AND RESULTS

Several experiments with CFL and LED bulbs were con-
) . ducted to analyze the performance of light fingerprinting
3.2. Convolutional Neural Net (CNN) Classifier for indoor localization. As described in previous sections

If a large amount of training data is available, a CNN clasIWO main experiments are presented below for classifying
sifier with multiple layers has the potential to generaliae t individual light bulbs.

new inputs and learn variations in the switching patterns of : . .
. P . gp 4.1. First Experiment: A Mixed Data-Set
lights. In our controlled experiments, we were able to atlle

fingerprint data-sets of a size on the order of the well-knownn the first experiment, the data-set is comprised dight
MNIST handwritten digits database. To show a proof-of-bulbs including: 1 LED (Cree brand),3 CFLs (Ecosmart
concept, our CNN classifier is comprised as follows: (1) npubrand), and2 CFLs (G. E. brand). A total oi6 data files
convolutional layer; (2) Max-pool layer; (3) Fully-conrted  for training were recorded for each light bulb, yielding
layer; (4) Output (soft-max regression) layer. The follow-16 x 23 = 368 training feature vectors per bulb. A total
ing parameter and input-output descriptions follow clgsel  of 8 data files per bulb were recorded as a test-set after
those specified in the literature (e.g. TensorFlow opencsour days of separation between train and test samples. A total
models). The convolutional layer is inspired by statef@-t  of 8 x 23 = 184 feature vectors per bulb were used for test-
art one-dimensional speech and two-dimensional image prgng. Table 1 shows the confusion matrix results of the CNN
cessing via deep learning. classifier. A total accuracy ®7.10% is obtained. As a com-
For the first experiment, the input size to the CNN wasparison, thek-nearest neighbor classifier achievetl11%
1400 spectral features. A convolutional kernel widtha¥fl  accuracy (confusion matrix not shown).
was selected with kernel strideand kernel deptB56 yield-
ing a convolutional output volume @400 x 1 x 256). A
max-pool kernel width oft and stride4 yielded a max-pool
output volume 0f350 x 1 x 256). The fully-connected layer
had input size350 x 1 x 256 = 89600 and output sizd 28.
The final output layer had input siz28 and output of6
classes. Before the final layer, a dropout probability) &f
was selected to avoid over-fitting, and a regularizatiotofac
of 0.001 was chosen. The batch size wasinput vectors,
and the CNN was trained fdi0 epochs. The initial learning
rate was).05 with a decay rate 0.95. Initialization of CNN ~ Table 1. Confusion matrix for CNN classifier fo6 lights
parameters was zero-mean with standard devidtion including1 LED (Cree brand)3 CFLs (Ecosmart brand), and
Similarly, for a second experiment with input feature size2 CFLs (G. E. brand). The train and test samples are taken
2048, the convolutional kernel width was51 with stride  With 2 days of separation. Total accuracydat10%.
1 and kernel depti28. The convolutional output volume

was 2048 x 1 x 128. After a max-pool layer with ker- 4.2 Second Experiment: Lights Of The Same Brand
nel width 4 and stride4, the max-pool output volume was

In the second experiment, the data-set is compris&dight

1Alternate classifiers such as support vector machines ($Wiétded bulbs which are all LEDs (Cree brand). A total 4§ data
comparable accuracies for classification. However, giverentraining data,
the multi-layer CNN architecture presented in this paperdhigher poten- 2|t is hypothesized that differemirrays of lights (e.g., LED arrays) could
tial to learn complex data variations and generalize to mgwits. also be distinguished via their combined group fingerprint.
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files for training were recorded for each light bulb, yielglin
40 x 23 = 920 training feature vectors per bulb. A total 23 .
data files per bulb were recorded as a test-set on the same dg "'°°°°Zf
as the training captures. In addition, a totaR0idata files per
bulb were recorded as a test-set atetays of separation be-
tween train and test samples. A totabofx 23 = 460 feature
vectors per bulb were used for testing in both cases. Table 2
shows the confusion matrix results of the CNN classifier for
the test-set taken on the same day as the training captures.
total accuracy 04.48% is obtained. As a comparison, the {
k-nearest neighbor classifier achiedd04% accuracy (con- ‘°“°“'< S A
Time

fusion matrix not shown). Similarly, Table 3 shows the confu o
sion matrix results of the CNN classifier for the test-seetak w00 300 220 KHz

1000
after2-days of separation between training and testing. A to- 0 * /,,,/P—W—S/;‘m’/

tal accuracy of76.11% is obtained. As a comparison, tke

nearest neighbor classifier achievagd41%, an almostiden-  Fig. 4. A plot of the FFT features of an LED (Verbatim brand)

tical result in accuracy (confusion matrix not shown). Thegver10 hours. Within certain frequency bands, a spectral drift
confusion matrix shows th&tof the8 LEDs caused most of s gbserved.

the classification error.

4.3. Indoor Localization Using Light Fingerprints

LED-C1 Aside from the above controlled experiments with light tsulb
LED-C2 our light fingerprinting hardware of Figure 1 was tested in
LED-C3 several indoor environments; e.g., hotel hallway, officiédbu
LED-C4 ing. The hardware system was able to distinguish multiple
LED-C5 locations consistently based on CFL lights. Certain brarids
LED-C6 LEDs (e.g., Verbatim) were challenging to distinguish con-

sistently over days of time separation between train ard tes
One particular issue which causes errors in classificaton i
plotted in Figure 4. The changes in the frequency magnitude
values of one instantiation of an LED light bulb (Verbatim
Table 2. Confusion matrix for CNN classifier f& instantia-  brand) are recorded ovéd hours. Within bands of frequency,
tions of an LED light (Cree brand). The train and test samplespectral drift is observed over time. The drift regions may e
were taken from the same day of data collection. Total accuther be excluded as features, or compensated by giving more
racy o0f94.48%. training data to the classifiers. A practical idea which im-
proved classification accuracy for both CFLs and LEDs is the
use ofmultiple feature vectors during the test phase of classi-
fying a light bulb. In other words, duringlanger test phase,

a consensus may be reached over multiple feature vectors.

LED-C7
LED-C8

LED-C1

LED-C2 5. DISCUSSION

LED-C3

LED-C4 As shown by the classification results of experiments, it is
LED-C5 possible to distinguish high-frequency fluctuations ofatif
LED-C6 ent light bulbs, even of the same brand. Most CFL bulbs ex-
LED-C7 hibit a greater variability in high-frequency switchingeans

LED-C8 than LED bulbs. With more training data, the CNN classifier
has the potential to perform better than thaearest neigh-
bor classifier; however, classifiers with low-complexity fo

Table 3. Confusion matrix for CNN classifier fa¥ instanti- - aining and testing are good candidates for mobile devices
ations of an LED light (Cree brand). The train and test saMpyhile a major property of our light fingerprinting system is

ples were taken after days of separation. Total accuracy of jiq infrastructure-less ease of use, it is important to o

76.11%. our system is still compatible with modulation systems wahic
embed identifying signals in light switching patterns.
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